Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The initiation of mobile-lid plate tectonics on Earth represented a critical transition towards a more familiar world in terms of surface temperature stabilization, biogeochemical cycling, topography creation, and other processes. Zircon-based estimates of the geomagnetic field intensity have recently been cited as providing evi- dence for the lack of mobile-lid motion between 3.9 and 3.4 billion years ago (Ga). We reanalyze the published dataset of 91 zircon paleointensities from the Jack Hills (Australia) and Green Sandstone Bed (GSB; South Africa) localities within this time interval and, using both analytical and bootstrap resampling approaches, show that the small number of samples result in large uncertainties in implied paleolatitude. Specifically, in more likely sce- narios that do not assume coherent motion for both localities, all latitudinal displacements on Earth are permitted within the 95 % confidence interval. We also examine the less likely scenario that the two landmasses shared a motion history, which increases the data density and presents the best-case scenario for constraining latitudinal motion. In this case, the 95 % confidence interval of the zircon paleointensity data is compatible with the displacements of between 35 % and 52 % of modern continental localities, all of which experience mobile-lid tectonics. Finally, generating expected paleointensity time series for modern continents undergoing mobile-lid motion shows that about two-thirds of these motions would not be resolved by zircon paleointensities, even in the best-case scenario of combining Jack Hills and GSB datasets. All of these analyses assume that these zircons retain a primary paleomagnetic signal, an assertion which is opposed by a number of published zircon magnetism studies. We conclude that Archean zircon paleointensities do not provide evidence for or against mobile-lid plate tectonics prior to 3.4 Ga. Future paleomagnetic investigation of tectonic regime on the early Earth should therefore focus on magnetization directions in well-preserved, oriented whole rocks.more » « less
-
Abstract Speleothems are mineral deposits capable of recording detrital and/or chemical remanent magnetization at annual timescales. They can offer high‐resolution paleomagnetic records of short‐term variations in Earth's magnetic field, crucial for understanding the evolution of the dynamo. Owing to limitations on the magnetic moment sensitivity of commercial cryogenic rock magnetometers (∼10−11 Am2), paleomagnetic studies of speleothems have been limited to samples with volumes of several hundreds of mm3, averaging tens to hundreds of years of magnetic variation. Nonetheless, smaller samples (∼1–10 mm3) can be measured using superconducting quantum interference device (SQUID) microscopy, with a sensitivity better than ∼10−15 Am2. To determine the application of SQUID microscopy for obtaining robust high‐resolution records from small‐volume speleothem samples, we analyzed three different stalagmites collected from Lapa dos Morcegos Cave (Portugal), Pau d'Alho Cave (Brazil), and Crevice Cave (United States). These stalagmites are representative of a range of magnetic properties and have been previously studied with conventional rock magnetometers. We show that by using SQUID microscopy we can achieve a five‐fold improvement in temporal resolution for samples with higher abundances of magnetic carriers (e.g., Pau d'Alho Cave and Lapa dos Morcegos Cave). In contrast, speleothems with low abundances of magnetic carriers (e.g., Crevice Cave) do not benefit from higher resolution analysis and are best analyzed using conventional rock magnetometers. Overall, by targeting speleothem samples with high concentrations of magnetic carriers we can increase the temporal resolution of magnetic records, setting the stage for resolving geomagnetic variations at short time scales.more » « less
-
Abstract A key objective of the Perseverance rover mission is to acquire samples of Martian rocks for future return to Earth. Eventual laboratory analyses of these samples would address key questions about the evolution of the Martian climate, interior, and habitability. Many such investigations would benefit greatly from samples of Martian bedrock that are oriented in absolute Martian geographic coordinates. However, the Mars 2020 mission was designed without a requirement for orienting the samples. Here we describe a methodology that we developed for orienting rover drill cores in the Martian geographic frame and its application to Perseverance's first 20 rock samples. To orient the cores, three angles were measured: the azimuth and hade of the core pointing vector (i.e., vector oriented along the core axis) and the core roll (i.e., the solid body angle of rotation around the pointing vector). We estimated the core pointing vector from the attitude of the rover's Coring Drill during drilling. To orient the core roll, we used oriented images of asymmetric markings on the bedrock surface acquired with the rover's Wide Angle Topographic Sensor for Operations and eNgineering (WATSON) camera. For most samples, these markings were in the form of natural features on the outcrop, while for four samples they were artificial ablation pits produced by the rover's SuperCam laser. These cores are the first geographically‐oriented (<2.7° 3σtotal uncertainty) bedrock samples from another planetary body. This will enable a diversity of paleomagnetic, sedimentological, igneous, tectonic, and astrobiological studies on the returned samples.more » « less
-
A potential record of Earth’s magnetic field going back 4.2 billion years (Ga) ago is carried by magnetite inclusions in zircon grains from the Jack Hills. This magnetite may be secondary in nature, however, meaning that the magnetic record is much younger than the zircon crystallization age. Here, we use atom probe tomography to show that Pb-bearing nanoclusters in magnetite-bearing Jack Hills zircons formed during two discrete events at 3.4 and <2 Ga. The older population of clusters contains no detectable Fe, whereas roughly half of the younger population of clusters is Fe bearing. This result shows that the Fe required to form secondary magnetite entered the zircon sometime after 3.4 Ga and that remobilization of Pb and Fe during an annealing event occurred more than 1 Ga after deposition of the Jack Hills sediment at 3 Ga. The ability to date Fe mobility linked to secondary magnetite formation provides new possibilities to improve our knowledge of the Archean geodynamo.more » « less
-
Abstract Recent advances in magnetic microscopy have enabled studies of geological samples whose weak and spatially nonuniform magnetizations were previously inaccessible to standard magnetometry techniques. A quantity of central importance is the net magnetic moment, which reflects the mean direction and the intensity of the magnetization states of numerous ferromagnetic crystals within a certain volume. The planar arrangement of typical magnetic microscopy measurements, which originates from measuring the field immediately above the polished surface of a sample to maximize sensitivity and spatial resolution, makes estimating net moments considerably more challenging than with spherically distributed data. In particular, spatially extended and nonuniform magnetization distributions often cannot be adequately approximated by a single magnetic dipole. To address this limitation, we developed a multipole fitting technique that can accurately estimate net moment using spherical harmonic multipole expansions computed from planar data. Given that the optimal location for the origin of such expansions is unknown beforehand and generally unconstrained, regularization of this inverse problem is critical for obtaining accurate moment estimates from noisy experimental magnetic data. We characterized the performance of the technique using synthetic sources under different conditions (noiseless data, data corrupted with simulated white noise, and data corrupted with measured instrument noise). We then validated and demonstrated the technique using superconducting quantum interference device microscopy measurements of impact melt spherules from Lonar crater, India and dusty olivine chondrules from the CO chondrite meteorite Dominion Range 08006.more » « less
-
Abstract The India‐Eurasia collision is a key case study for understanding the influence of plate tectonic processes on Earth's crust, atmosphere, hydrosphere, and biosphere. However, the timing of the final India‐Eurasia continental collision is debated due to significant uncertainty in the age of the collision between the Kohistan‐Ladakh arc (KLA) and Eurasia along the Shyok suture zone. Here we present paleomagnetic results that constrain the Karakoram terrane in northwest India to a paleolatitude of 19.9 ± 8.9°N between 93 and 75 million years ago (Ma). Our results show that the Karakoram terrane was situated on the southern margin of Eurasia in the Late‐Cretaceous. Our results indicate that the KLA and Eurasian continent had a not converged until <61.6 Ma, placing a Paleocene older limit on the age of final closure of the Shyok suture zone. This suggests that the India‐Eurasia collision in northwestern India likely occurred after the closure of the oceanic basin between the KLA and Eurasia. The Paleocene collision event affecting India that has been widely interpreted to represent final India‐Eurasia collision instead records the arc‐continent collision between the KLA and the northern edge of India prior to final India‐Eurasia collision. Final India‐Eurasia collision in northwest India most likely occurred after the closure of the oceanic basin between the KLA and Eurasia.more » « less
-
Abstract We address in situ serpentinization and mineral carbonation processes in oceanic lithosphere using integrated field magnetic measurements, rock magnetic analyses, superconducting quantum interference device (SQUID) microscopy, microtextural observations, and energy dispersive spectroscopy phase mapping. A representative suite of ultramafic rock samples were collected, within the Atlin ophiolite, along a 100‐m long transect across a continuous outcrop of mantle harzburgite with several alteration fronts: serpentinite, soapstone (magnesite + talc), and listvenite (magnesite + quartz). Strong correlations between changes in magnetic signal strengths and amount of alteration are shown with distinctive contrasts between serpentinite, transitional soapstone, and listvenite that are linked to the formation and breakdown of magnetite. While previous observations of the Linnajavri ultramafic complex indicated that the breakdown of magnetite occurred during listvenite formation from the precursor soapstone (Tominaga et al., 2017,https://doi.org/10.1038/s41467-017-01610-4), results from our study suggest that magnetite destabilization already occurred during the replacement of serpentinite by soapstone (i.e., at lower fluid CO2concentrations). This difference is attributed to fracture‐controlled flow of sulfur‐bearing alteration fluid at Atlin, causing reductive magnetite dissolution in thin soapstone zones separating serpentinite from sulfide‐mineralized listvenite. We argue that magnetite growth or breakdown in soapstone provides insight into the mode of fluid flow and the composition, which control the scale and extent of carbonation. This conclusion enables us to use magnetometry as a viable tool for monitoring the reaction progress from serpentinite to carbonate‐bearing assemblages in space and time with a caution that the three‐dimensionality of magnetic sources impacts the scalability of measurements.more » « less
-
null (Ed.)The time of origin of the geodynamo has important implications for the thermal evolution of the planetary interior and the habitability of early Earth. It has been proposed that detrital zircon grains from Jack Hills, Western Australia, provide evidence for an active geodynamo as early as 4.2 billion years (Ga) ago. However, our combined paleomagnetic, geochemical, and mineralogical studies on Jack Hills zircons indicate that most have poor magnetic recording properties and secondary magnetization carriers that postdate the formation of the zircons. Therefore, the existence of the geodynamo before 3.5 Ga ago remains unknown.more » « less
An official website of the United States government
